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Assumption-based Argumentation (ABA) frameworks ABA frameworks
have been advocated as unifying frameworks for various forms of non-monotonic
reasoning, including logic programming [BDKT97,CFST17].

Formally, an ABA framework is a tuple 〈L, R, A, 〉 such that:

– 〈L,R〉 is a deductive system, where L is a language and R is a set of (infer-
ence) rules of the form s0 ← s1, . . . , sm (m ≥ 0, si ∈ L, for 1 ≤ i ≤ m);

– A ⊆ L is a (non-empty) set of assumptions;
– is a total mapping from A into L, where a is the contrary of a, for a ∈ A.

Elements of L can be any sentences, but in this paper L is a set of ground
atoms. Also, we focus on flat ABA frameworks where assumptions are not heads
of rules. In the spirit of logic programming, we will use variables to represent
compactly all instances over some underlying universe. For instance, an ABA
framework of the kind we consider may have L = {p(X), a(X), q(X), b(X)|X ∈
{1}}, A = {a(X), b(X)|X ∈ {1}}, with a(X) = q(X), b(X) = p(X) and R =
{p(X)← a(X), q(X)← b(X)}.

The semantics of flat ABA frameworks is given in terms of “acceptable”
extensions, i.e. sets of arguments able to “defend” themselves against attacks.
Intuitively, arguments are deductions of claims using rules and supported by
assumptions, and attacks are directed at the assumptions in the support of
arguments. An argument is represented as S ` c, where S is a set of assumptions
from which the claim c can be deduced using the available rules. Argument
S1 ` c1 attacks argument S2 ` c2 if c1 is the contrary of an assumption in S2.
In the earlier example, argument {a(1)} ` p(1) attacks argument {b(1)} ` q(1)
(and vice versa), and {a(1)} ` a(1) attacks {b(1)} ` b(1) (and vice versa).

Given an ABA framework 〈L, R, A, 〉 of the restricted form we consider,
let Args be the set of all arguments and Att = {(α, β) ∈ Args × Args | α
attacks β}. Then, the notion of “acceptable” extensions we will focus on in this
paper is as follows: ∆ ⊆ Args is a stable extension iff (i) @α, β ∈∆ such that
(α, β) ∈ Att (i.e. ∆ is conflict-free) and (ii) ∀β ∈ Args \ ∆, ∃α ∈ ∆ such that
(α, β)∈Att (i.e.∆ “attacks” all arguments it does not contain, thus pre-emptively
“defending” itself against potential attacks). We will consider the brave (a.k.a.
credulous) consequences of (flat) ABA frameworks 〈L, R, A, 〉, i.e. the sets of



2 E. De Angelis and M. Proietti and F. Toni

sentences in L that are claims of arguments in at least one stable extension for
〈L, R, A, 〉. In our earlier simple illustration, there are two stable extensions:
{{a(1)} ` p(1), {a(1)} ` a(1)} and {{b(1)} ` q(1), {b(1)} ` b(1)}. Thus, both
p(1) and q(1) are brave consequences.

Learning Brave ABA frameworks In recent work we have presented an
approach for learning ABA frameworks from background knowledge and positive
and negative examples [PT23,DPT23]. In this paper we address the problem of
automating the learning of ABA frameworks in the case where their semantics
is defined in terms of brave consequences.

Given background knowledge 〈L, R, A, 〉, positive examples E+ and neg-
ative examples E− with E+ ∩ E− = ∅, the goal of brave ABA Learning is to
construct 〈L′,R′,A′, ′〉 such that R ⊆ R′, A ⊆ A′, and the following three
conditions hold:
(Existence) 〈L′,R′,A′, ′〉 admits at least one stable extension ∆,
(Completeness) for all e ∈ E+, S ` e ∈ ∆, for some set S of assumptions,
(Consistency) for all e ∈ E−, S ` e 6∈ ∆, for any S.
〈L′,R′,A′, ′〉 is called a brave solution of the given ABA Learning problem. A
solution is intensional when R′ \ R comprises non-ground rule schemata, thus
obtaining fairly general rules. As an example of a learning problem, consider a
version of the Nixon-diamond example [RC81].
Background Knowledge. We only show the rules, where we use equalities for a
uniformity of presentation.
R = {ρ1 : quaker(X)← X = a, ρ2 : republican(X)← X = a,

ρ3 : quaker(X)← X = b, ρ4 : republican(X)← X = b}.
Positive Examples: E+ = {pacifist(a)}, Negative Examples: E− = {pacifist(b)}.
Note that this example can be seen as capturing a form of noise, whereby two
rows of the same table (one for a and one for b) are characterised by exactly the
same attributes (amounting to being quakers and republicans) but have different
labels (one is pacifist, the other is not). In non-monotonic reasoning terms, this
requires reasoning with contradictory rules [RC81].

Learning brave ABA frameworks via transformation rules and An-
swer Set Programming (ASP) In order to automate the learning of ABA
frameworks under brave reasoning, we consider the approach based transfor-
mation rules presented in previous work [PT23]. In what follows, by means of
our Nixon-diamond example, we briefly explain (some of) the transformation
rules (namely, Rote Learning, Folding, and Assumption Introduction) and we
outline an algorithm for their application, which is guided by the use of an ASP
solver [GKKS12]

The set R′ of learnt rules is initialised by adding to R the rule:
ρ5 : pacifist(X)← X = a

This is done by an application of the Rote Learning transformation, which in-
deed allows us to add to R rules corresponding to positive examples. Now,
R′ = R ∪ {ρ5} is a brave solution of the learning problem. However, this so-
lution is not satisfactory as rule ρ5 is specific to the individual a, and hence
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it is not an intensional solution. In order to obtain an intensional solution, the
learning algorithm proceeds by iterating a sequence of applications of Folding,
Assumption Introduction, and Rote Learning, in this order.

First, we generalise ρ5 by applying the Folding transformation using rule ρ1
from the background knowledge, that is, by replacing X = a in the body of ρ5
with its consequence quaker(X):

ρ6 : pacifist(X)← quaker(X)

Note that other Foldings are possible, leading to different ABA frameworks.
Now, R′ = R ∪ {ρ6} has the positive example pacifist(a) as a brave conse-
quence. However, every stable extension that accepts an argument for pacifist(a),
also accepts an argument for the negative example pacifist(b). Thus, the ABA
framework obtained so far is not a solution of the learning problem. In order
to get an ABA framework with a stable extension that accepts pacifist(a) and
not pacifist(b), we apply the Assumption Introduction rule and we introduce
a new assumption normal_quaker(X) with contrary normal_quaker(X) =
abnormal_quaker(X), where abnormal_quaker(X) is a new predicate symbol.
Then we replace ρ6 with:

ρ7 : pacifist(X)← quaker(X), normal_quaker(X)

and we look for suitable facts for abnormal_quaker(X) that, when added to R′
obtain a new ABA framework with a stable extension that accepts pacifist(a)
and not pacifist(b). This task is translated into an ASP program consisting of
R∪ {ρ7} along with the following rules:

abnormal_quaker(X)← quaker(X), not normal_quaker(X)

normal_quaker(X)← quaker(X), not abnormal_quaker(X)

← abnormal_quaker(X), normal_quaker(X)

← not pacifist(a)
← pacifist(b)

This ASP program has an answer set that contains the atom abnormal_quaker(b).
By Rote Learning we add the rule

ρ8 : abnormal_quaker(X)← X = b

and we get a new ABA framework with set of rules R ∪ {ρ7, ρ8}. Thus, the
effect of Assumption Introduction and Rote Learning is to introduce an excep-
tion to the applicability of rule ρ6. Again, the current ABA framework is a
non-intensional, brave solution of our Nixon-diamond learning problem, and the
algorithm proceeds with further iterations. After two iterations we replace ρ8
with

ρ9 : abnormal_quaker(X)← republican(X), normal_republican(X)

ρ10 : abnormal_republican(X)← quaker(X), normal_quaker(X)

where the atom normal_republican(X) is a new assumption with contrary
normal_republican(X) = abnormal_republican(X).

The final learnt set of rules is R∪{ρ7, ρ9, ρ10}, which is an intensional brave
solution of the Nixon-diamond learning problem. Indeed, the final ABA frame-
work has (among others) a stable extension including the following arguments:

{normal_quaker(a)} ` pacifist(a),
{normal_quaker(a)} ` abnormal_republican(a),
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{normal_republican(b)} ` abnormal_quaker(b),
∅ ` quaker(a), ∅ ` republican(a), ∅ ` quaker(b), ∅ ` republican(b)

Note that there are three other stable extensions of the resulting ABA framework
(one where b is pacifist and a is not, one where both are pacifist and one where
neither is), and thus sceptical reasoning would not work.
Related Work Some work on learning argumentation frameworks has been done,
e.g. [DK95,PGNK22], but the specificity of our approach is that it learns ABA
frameworks and uses ASP. Our work is also related to various techniques that
learn various kinds of non-monotonic rules. Among these we mention: approaches
that combine abductive and inductive learning [IH00,Ray09], non-monotonic
logic programs [KY97,Sak00,SSG17], and ASP programs [LRB14,Sak05,SI09].
A formal comparison with these methods is left for future work.

References

BDKT97. A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell., 93:63–
101, 1997.

CFST17. K. Cyras, X. Fan, C. Schulz, and F. Toni. Assumption-based argumentation:
Disputes, explanations, preferences. FLAP, 4(8), 2017.

DK95. Y. Dimopoulos and A. C. Kakas. Learning non-monotonic logic programs:
Learning exceptions. In ECML 1995, pages 122–137, 1995.

DPT23. E. De Angelis, M. Proietti, and F. Toni. ABA learning via ASP. EPTCS,
385:1–8, aug 2023. Technical Communications, ICLP 2023.

GKKS12. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving
in Practice. Morgan & Claypool Publishers, 2012.

IH00. K. Inoue and H. Haneda. Learning abductive and nonmonotonic logic pro-
grams. In Abduction and Induction: Essays on their Relation and Integra-
tion, pages 213–231. Kluwer Academic, 2000.

KY97. K.Inoue and Y.Kudoh. Learning extended logic programs. In IJCAI, pages
176–181. MorganKaufmann, 1997.

LRB14. M. Law, A. Russo, and K. Broda. Inductive learning of answer set programs.
In JELIA 2014, LNCS 8761, pages 311–325, 2014.

PGNK22. N. Prentzas, A. Gavrielidou, M. Neofytou, and A. C. Kakas. Argumentation-
based explainable machine learning (argeml): A real-life use case on gyne-
cological cancer. In ArgML 2022, CEUR-WP, 3208, pages 1–13, 2022.

PT23. M. Proietti and F. Toni. Learning assumption-based argumentation frame-
works. CoRR, 2023. To appear in Proc. ILP ‘22, LNCS, Springer.

Ray09. O. Ray. Nonmonotonic abductive inductive learning. J. Appl. Log.,
7(3):329–340, 2009.

RC81. R. Reiter and G. Criscuolo. On interacting defaults. In IJCAI, pages 270–
276. William Kaufmann, 1981.

Sak00. C. Sakama. Inverse entailment in nonmonotonic logic programs. In Proc.
ILP 2000, 2000.

Sak05. C. Sakama. Induction from answer sets in nonmonotonic logic programs.
ACM TOCL, 6(2):203–231, 2005.

SI09. C. Sakama and K. Inoue. Brave induction: A logical framework for learning
from incomplete information. Mach. Learn., 76(1):3–35, 2009.

SSG17. F. Shakerin, E. Salazar, and G. Gupta. A new algorithm to automate
inductive learning of default theories. TPLP, 17(5-6):1010–1026, 2017.


	Learning Brave Assumption-Based Argumentation Frameworks via ASP

